

US009408542B1

(12) United States Patent Kinast et al.

(54) NON-INVASIVE BLOOD PRESSURE MEASUREMENT SYSTEM

(75) Inventors: Eric Karl Kinast, Santa Ana, CA (US);

Valery G. Telfort, Montreal (CA)

(73) Assignee: MASIMO CORPORATION, Irvine,

CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 559 days.

(21) Appl. No.: 13/189,396

(22) Filed: Jul. 22, 2011

Related U.S. Application Data

(60) Provisional application No. 61/366,862, filed on Jul. 22, 2010, provisional application No. 61/469,511, filed on Mar. 30, 2011.

(51) Int. Cl.

 A61B 5/021
 (2006.01)

 A61B 7/00
 (2006.01)

 A61B 5/0452
 (2006.01)

 A61B 5/024
 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

CPC A61B 5/02125; A61B 5/0452; A61B 5/02416; A61B 2562/04; A61B 2562/06; A61B 7/00

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

1,520,737 A 12/1924 Wright 1,735,481 A 11/1929 Uren

(10) Patent No.: US 9,408,542 B1 (45) Date of Patent: Aug. 9, 2016

1,811,560 A 6/1931 Ranney 1,811,561 A 6/1931 Ranney 2,210,582 A 8/1940 Gross et al. (Continued)

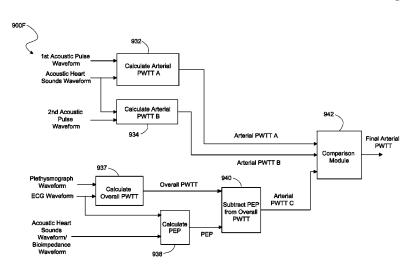
(------)

FOREIGN PATENT DOCUMENTS

CA 2341416 3/2000 DE 1905620 8/1970 (Continued)

OTHER PUBLICATIONS

Pannier et al. ("Methods and Devices for Measuring Arterial Compliance in Humans" American Journal of Hypertension; 2002; vol. 15, No. 8, pp. 743-753).*


(Continued)

Primary Examiner — Navin Natnithithadha
Assistant Examiner — Meredith Weare
(74) Attorney, Agent, or Firm — Knobbe, Martens, Olson & Bear, LLP

(57) ABSTRACT

A system for non-invasively determining an indication of an individual's blood pressure is described. In certain embodiments, the system calculates pulse wave transit time using two acoustic sensors. The system can include a first acoustic sensor configured to monitor heart sounds of the patient corresponding to ventricular systole and diastole and a second acoustic sensor configured to monitor arterial pulse sounds at an arterial location remote from the heart. The system can advantageously calculate a arterial pulse wave transit time (PWTT) that does not include the pre-ejection period time delay. In certain embodiments, the system further includes a processor that calculates the arterial PWTT obtained from the acoustic sensors. The system can use this arterial PWTT to determine whether to trigger an occlusive cuff measurement.

2 Claims, 25 Drawing Sheets

